

The Global Status of Geothermal energy Ben Duncan

Agenda

- Basics / overview
 - Electricity
 - Direct
 - Timeline
- Case studies
- Future
- TROVE Demo

Geothermal Basics

Greek words, geo & therme

Heat increases with depth Range of interest: ~10km and ~500 DegC

Radiogenic heat

Earth's Crust Temperature Profile at Different Locations

Sustainable, reliable energy source!

https://i.stack.imgur.com/Gvtw7.jpg

Kilauea, Hawaii

Strokkur, Iceland

The Global Power Potential!

GEOTHERMAL POWER TECHNOLOGY BRIEF

September 2017 www.irena.org

Lets talk about energy!

What's powering Scotland?

Renewables met 97% of Scotland's electricity demand in 2020!

2030 target is to generate 50% of all **energy** (electricity, heat and transport) from renewables.

2019 was 24% (Iceland is >82%)

Scottish Energy Statistics Hub

Uses of Geothermal energy

The type and scale of geothermal exploitation depends on the natural resources available

ELECTRICITY GENERATION

Requires high heat resources (>100DegC)

University of Calgary

DIRECT USE (Heating)

- Deep (e.g. sedimentary basins or granites)
- Shallow (almost anywhere!)

Geothermal Electricity

TROVE Geothermal

Aim = all geothermal electricity power plants Plus an increasing amount of deep heating schemes

Shallow Geothermal (Ground Source Heat Pumps)

Heat exchangers utilising the steady temperature in shallow underground. Can be used almost anywhere!

China is the world

Also a si Fran

TROVE excludes Geothermal <100m currently have highest The UK ar numbers of new installations in Europe.

Geothermal Direct Uses

Bathing (Everywhere there's hot springs!)

Use	Countries	Leaders / examples
Space heating	29	District: China, Iceland, Turkey, France and Germany Individual:Turkey, Russia, Japan, United States, and Hungary
Greenhouses	32	Turkey, China, Netherlands, Russia and Hungary
Aquaculture	21	China, United States, Iceland, Italy and Israel
Agricultural crop drying	15	Iceland Seaweed, Mexico Timber, El Salvador fruit
Industrial process heat	14	Boric acid production Italy, concrete curing Guatemala, milk pasteurisation Romania
Snow melting	5	Iceland, Japan, Argentina, USA, Slovenia

Netherlands and Hungary have a large direct use for agricultural.

Hoogweg.nl

Direct Use

Iceland is the world leader per capita (7MWt per 1,000 people)

Historic Geothermal Power

Direct use

The world's first 'district heating system' was installed at Chaudes-Aigues, France, in the 14th century (Philip VI of Valois). Hot springs located above the village meant wooden pipes and simple taps were all that was needed.

1930 - Reykjavík, Iceland - District Heating System

Sources in TROVE

Case Studies

Case Studies – Larderello, Italy

The worlds first geothermal plant!

Enel Green Power constructed and still run the worlds first geothermal power plant in Tuscany - Larderello

In 1904 the first geothermal dynamo powered a lightbulb

In 1913 the first geothermal power plant came online with a capacity of 250 KWe.

- 2 wells producing fluids at 200 & 250
 Deg C
- By 1940 Capacity was 130MW
- Powered Italian railway system before WW2

Today the complex capacity is 526MW

- 21 Plants ~180 wells
- -~2% of Italy's energy

Case Studies – The Geysers/USA

https://www.nrel.gov/docs/fy21osti/77774.pdf https://core.ac.uk/download/pdf/205991425.pdf

Image from Yellowstone Wyoming - no actual geysers at 'The Geysers' California

Case Studies - Iceland Deep Drilling Project

Reykjanes, IDDP-2 well at the Reykjanes Peninsula in Iceland reached the depth of 4,659 meters 2017.

DEPLOYMENT OF DEEP ENHANCED GEOTHERMAL SYSTEMS FOR SUSTAINABLE ENERGY BUSINESS

Case Studies – Soultz Enhanced Geothermal System (EGS)

Pilot European project started in 1987 based around a heat anomaly in French Upper Rhine Graben.

1.5 MW Power plant commissioned in 2010

Now also testing modular small scale ORC (Binary) machines

Case Studies - Geothermal Power in the UK

https://learninghub.rpsgroup.com/mod/hvp/view.php?id=3446

Future

The next developments

District heating

Heat Exchangers

Understanding of geothermal resources

Political

Ground Source Heat Pumps (GSHP)

Use of Mine water

Enhanced Geothermal Systems

Advanced drilling techniques Acid stimulation

Retrofitting wells

Modulation

Re-purposing hydrocarbon wells

Turbines/plants

Direct Lithium extraction

The next developments

Enhanced Geothermal Systems

Formerly Hot Dry Rock

EGS involves drilling deeper and fracturing rock to create an artificial circulation system

Advanced Geothermal Systems (Closed Loop Systems)

Closed Loop Systems

greenfireenergy.com

Closed Loop systems greatly reduces exploration risk because there is no need for subsurface permeability or large volumes of water in the resource.

2019 Coso, California, demonstration plant

Competitive cost of energy

Figure 6.4 LCOE of geothermal power projects by technology and project size, 2007-2021 0.20 Fossil fuel cost range 0.15 2019 USD/kWh 0.10 0.05 0.00 2007 2013 2015 2017 2009 2011 2019 2021 Binary Direct steam Flash types Enhanced Hybrid n.a. Capacity (MW) 1 100 200 ≥ 300 Source: IRENA Renewable Cost Database.

Already competitive in conventional locations. Need more EGS pilots studies.

RENEWABLE POWER GENERATION COSTS IN 2019

What is the future of Geothermal?

A geothermal revolution may be just around the corner!

What is the future of Geothermal?

A geothermal revolution may be just around the corner!

TROVE Renewables

Visit: www.TroveRenewables.com

Email: info@TroveRenewables.com